Saturday, March 26, 2016

PAPER: Tensor Methods and Recommender Systems


http://arxiv.org/pdf/1603.06038.pdf

Please see also:
PAPER A Scalable People-to-People Hybrid Reciprocal Recommender Using Hidden Markov Models

http://onlinedatingsoundbarrier.blogspot.com.ar/2016/03/paper-scalable-people-to-people-hybrid.html 
A people-to-people content-based reciprocal recommender using hidden markov models
http://dl.acm.org/citation.cfm?id=2507214&dl=ACM&coll=DL&CFID=589669483&CFTOKEN=18383938

new PAPER: A New Hybrid Popular Model for Personalized Tag Recommendation
http://onlinedatingsoundbarrier.blogspot.com.ar/2016/03/new-paper-new-hybrid-popular-model-for.html

People-to-People Reciprocal Recommenders
http://onlinedatingsoundbarrier.blogspot.com.ar/2015/11/people-to-people-reciprocal-recommenders.html

PAPER A Deployed People-to-People Recommender System in Online Dating
http://onlinedatingsoundbarrier.blogspot.com.ar/2015/10/paper-deployed-people-to-people.html

PAPER Collaborative filtering for people-to-people recommendation in online dating: data analysis and user trial
http://onlinedatingsoundbarrier.blogspot.com.ar/2014/12/paper-collaborative-filtering-for.html

PAPER Top-N Recommendation with Novel Rank Approximation http://onlinedatingsoundbarrier.blogspot.com.ar/2016/03/paper-top-n-recommendation-with-novel.html
 
 
PAPER Similarity Scores Evaluation in Social Networking Sites
http://onlinedatingsoundbarrier.blogspot.com.ar/2015/12/paper-similarity-scores-evaluation-in.html


Web Personalization: The State of the Art and Future Avenues for Research and Practice
http://www.sciencedirect.com/science/article/pii/S0736585315300794


RECOMMENDER SYSTEM IN BIG DATA ENVIRONMENT
https://www.researchgate.net/profile/Udeh_Tochukwu/publication/282150431_RECOMMENDER_SYSTEM_IN_BIG_DATA_ENVIRONMENT/links/5605162308aeb5718ff03fbc.pdf


Personality Based Recommender Systems are the next generation of recommender systems because they perform far better than Behavioural ones (past actions and pattern of personal preferences)

That is the only way to improve recommender systems, to include the personality traits of their users. They need to calculate personality similarity between users.
 
In case you had not noticed, recommender systems are morphing to compatibility matching engines, as the same used in the Online Dating Industry. 

Which is the RIGHT approach to innovate in the Personality Based Recommender Systems Arena?

 
T
he same approach to innovate in the Online Dating Industry == 16PF5 test or similar to assess personality traits and a new method to calculate similarity between quantized patterns.
 LIFEPROJECT METHOD
 
All other proposals are NOISE and perform as placebo.

No comments:

Post a Comment