Thursday, September 13, 2012

RecSys 2012 ACM Conference On Recommender Systems


Academics/Researchers wasting time, publishing rubbish in the Recommender Systems Arena.
The main disadvantage with recommendation engines based on collaborative filtering is when users instead of providing their personal preference try to guess the global preference and they introduce bias in the recommendation algorithm.

Personality Based Recommender Systems are the next generation of recommender systems because they perform FAR better than Behavioural ones (past actions and pattern of personal preferences)
That is the only way to improve recommender systems, to include the personality traits of their users.

Have you seen they need to calculate personality similarity between users?
Have you seen there are different formulas to calculate similarity?
In case you did not notice, recommender systems are morphing to .......... compatibility matching engines!!!
They mostly use the Big5 to assess personality and the Pearson correlation coefficient to calculate similarity.

------------------

What comes after Social Networking?
My bet: The Next Big Investment Opportunity on the Internet will be …. Personalization!
Personality Based Recommender Systems and Strict Personality Based Compatibility Matching Engines for serious Online Dating with the normative 16PF5 personality test. 



Please also read:
An exercise of similarity.
How LIFEPROJECT METHOD calculates similarity

No comments:

Post a Comment

Hinge’s CEO says dating isn’t something people should leave up to AI

 El CEO de Hinge asegura que la gente no debería dejar las citas en manos de la IA https://www.infobae.com/fortune/2025/06/27/el-ceo-de-hing...