Tuesday, May 10, 2016

PAPER: Trinity: Walking on a User-Object-Tag Heterogeneous Network for Personalised Recommendations


http://jcst.ict.ac.cn:8080/jcst/CN/10.1007/s11390-016-1648-0


PAPER Improving Recommender Systems’ Performance on Cold-start Users and Controversial Items by a New Similarity Model
http://onlinedatingsoundbarrier.blogspot.com.ar/2016/05/paper-improving-recommender-systems.html



Personality Based Recommender Systems are the next generation of recommender systems because they perform far better than Behavioural ones (past actions and pattern of personal preferences)
http://onlinedatingsoundbarrier.blogspot.com.ar/2016/03/paper-tensor-methods-and-recommender.html
 
That is the only way to improve recommender systems, to include the personality traits of their users. They need to calculate personality similarity between users.
http://onlinedatingsoundbarrier.blogspot.com.ar/2016/04/paper-predicting-personality-traits.html
In case you had not noticed, recommender systems are morphing to compatibility matching engines, as the same used in the Online Dating Industry. 
Which is the RIGHT approach to innovate in the Personality Based Recommender Systems Arena?
 
The same approach to innovate in the Online Dating Industry == 16PF5 test or similar to assess personality traits and a new method to calculate similarity between quantized patterns.  LIFEPROJECT METHOD 

No comments:

Post a Comment