Friday, February 3, 2012

Auralist: Introducing Serendipity into Music Recommendation


Auralist: Introducing Serendipity into Music Recommendation

Abstract
Recommendation systems exist to help users discover content in a large body of items. An ideal recommendation system should mimic the actions of a trusted friend or expert, producing a personalised collection of recommendations that balance between the desired goals of accuracy, diversity, novelty and serendipity. We introduce the Auralist recommendation framework, a system that - in contrast to previous work - attempts to balance and improve all four factors simultaneously. Using a collection of novel algorithms inspired by principles of 'serendipitous discovery', we demonstrate a method of successfully injecting serendipity, novelty and diversity into recommendations whilst limiting the impact on accuracy. We evaluate Auralist quantitatively over a broad set of metrics and, with a user study on music recommendation, show that Auralist’s emphasis on serendipity indeed improves user satisfaction.

Although the paper is full rubbish, it is interesting to analyze the formulas the authors use to calculate similarity between users and to notice recommender systems are evolving.

Personality Based Recommender Systems are the next generation of recommender systems because they perform FAR better than Behavioural ones (past actions and pattern of personal preferences)
That is the only way to improve recommender systems, to include the personality traits of their users.
Have you seen they need to calculate personality similarity between users?
Have you seen there are different formulas to calculate similarity?
In case you did not notice, recommender systems are morphing to .......... compatibility matching engines!!!
They mostly use the Big5 to assess personality and the Pearson correlation coefficient to calculate similarity.

No comments:

Post a Comment